

Ensure Quality Code Throughout

Your Software Development Process

Static Analysis & Unit Testing
for Medical Devices

July 2019

Abstract

Regardless of industry, any company writing code understands the need for standardization and
proof-checking, and the medical device sector is no different. What is different is the emphasis on
safety, quality, performance, and security. While a lot of businesses have a standard practice they
follow, Velentium is here to inform the industry on how static analysis, dynamic analysis, and more
specifically, unit testing, can be developed and best applied to the development lifecycle for secure
medical device software.

One of Velentium’s Principal System Architect & Engineers, Satyajit “Sat” Ketkar, will explain how
companies can adopt these best practices, as well as show in detailed steps the way Velentium
accomplishes specific tasks internally using the software Parasoft. Sat has nineteen years of
engineering experience, seven of them in medical device design. A majority of his career has
revolved around electrical, firmware, software, and systems engineering, but recently he spent over
eighteen months working for a European Union notified body. This experience allowed him to see
product development in a different way, teaching him how to review and audit products for safety,
quality, performance, and security.

https://www.parasoft.com/

 2

Contents

Background ... 3

Static Analysis ... 3

Limitations... 3

Historical Overview ... 3

Guidelines & Standards ... 4

Dynamic Analysis .. 6

Unit Testing ... 7

Key Takeaways:

• What is Static Analysis, Dynamic Analysis, and Unit Testing?
• When and why should Static Analysis, Dynamic Analysis, and Unit Testing be

a part of your development process?
• What standards should be addressed when performing Static Analysis?
• Step-by-Step instructions on how to implement Keil uVision and Parasoft

together

 3

Background
Throughout this paper, we’ll be taking a look
at static analysis, dynamic analysis, and unit
testing: what they are, how they developed,
and how they are best applied to the secure
development lifecycle for medical device
software.

At the end of this paper, there is a link to a
step-by-step guide aimed at configuring
Parasoft for testing in medical device
development, which is the tool we’ve
identified as providing all the functionality we
require at the best price point.

Static Analysis
Static analysis, also called static code analysis,
is a method of computer program review and
debugging that is done by examining the code
without executing the program. The process
provides an understanding of the code
structure and helps to ensure that the code
adheres to industry standards. By running the
source code through a set of predetermined
criteria, called checkers, static analysis tools
expose various types of flaws in the code.
Static analysis tools function independently of
compilers, linkers, and hardware, and can
analyze the most commonly utilized
languages, C and C++.

Limitations
Current Static analysis tools do not replace
traditional code review entirely, but they
make the code review process more efficient
and productive. The next generation of static
analysis tools do show promise of improved
automation of the code review process, and
with further development, this could become
possible in the future.

Static analysis also
cannot look for
correctness based
on the intent of the
developer. For
example, if you have
a function that is
called “multiply (A,
B)” but when executed it returns A plus B, the
analyzer cannot determine whether the
developer’s intent was to multiply or add A
and B. Since this method of analysis does not
execute the code or compare results with
purpose, the possible bug would not be
considered a violation or caught.

Another limitation with this method is that it
cannot detect and enforce a developer’s
specific coding style unless the parameters of
that style are manually defined and input
before running the analysis. Even then,
results may vary.

Static analysis occasionally reports false
positives (saying there is a problem when
there isn’t one) and false negatives (assuming
there isn’t a problem when there is one).
Fortunately, each generation of static analysis
technology is continuing to decrease the
occurrences of these flaws. In the 1970s, the
false negative and positive rates were 25-
40%. By the 1990s, these rates were in the
10% range; today, false positive and negative
rates have improved to less than 1%.

Historical Overview
The concept of static analysis was first
introduced by Alan Turing in 1936 as he
attempted to address the halting problem
during his team’s work on the Enigma
machine.

Not much additional development occurred
after Turing until the 1970s, when safety-
critical firmware and software needed to be

INTENT CANNOT

BE DETERMINED!

 4

interpreted and checked for programming
errors, suspicious constructs, bugs, and
stylistic errors before they were executed.
Tools designed for this purpose were called
Linters, and the most popular one was Lint
(now PC-lint).

Static analysis tools have continuously
evolved, and some, like PC-lint, are still being
put to good use today. However, most of the
activities that first-generation Linters
performed have since been incorporated into
today’s compilers.

The 1990s brought several changes to static
analysis. Accommodating code standards
such as the then-new C89, beginning to
address code quality and metrics, and
decreasing the rates of false positives and
negatives. One of the standard tools at the
time was Coverity, which is less popular
today, but was a pioneer in code quality
analysis, checking issues like explicit casting
and variable consistency.

In the early 2000s, the automotive, oil and
gas, aerospace, medical, and other high-risk
industries came together to establish
standards for safe and secure code
development. The third generation of static
analysis began to emphasize safety, security,
and higher standards for code quality. At the
same time, static analysis concepts were
adopted by large corporations. Microsoft, for
example, incorporated some into their
Intellisense IDs. Meanwhile, Lint, Coverity,
and others released plug-ins for large-scale
configuration management systems.

Static analysis tools have incorporated new
standards based on C99 and further
improved the false positive and false negative
report rate to below 1%. One of the more
popular tools currently is Parasoft, which not
only facilitates compliance with industry
standards but goes beyond those standards

with a host of additional configurable checks
available as well (which we’ll discuss in-
depth later).

Guidelines &
Standards
Coding rules and guidelines exist to ensure
that software is:

• Safe – usable without causing harm.
Especially critical in the medical field,
where code that supports functions that
would typically be innocuous could have a
ripple effect impacting patient safety

• Secure – its vulnerabilities are mitigated
• Reliable – functions as it should, every

time
• Testable – can be evaluated
• Maintainable – even as the codebase

grows. We saw an example of
unmaintainable code with the Toyota
acceleration issue. When Toyota analyzed
their dysfunctional code, they found that
it had become unmanageably complex
over years of continuous development
with insufficient checks and oversight.

• Portable – functionality is the same across
various environments and systems

Using established coding standards:

• Ensures compliance with ISO (the
International Standards Organization),
which is required for most major medical
device markets

• Guarantees consistent code quality – no
matter when or who writes the code

• Secures the software right from project
start

• Reduces Costs by speeding up time-to-
market through reduced variability and

https://www.gimpel.com/html/pcl.htm
https://en.wikichip.org/wiki/c/c89
https://scan.coverity.com/
https://en.wikipedia.org/wiki/C99
https://www.parasoft.com/
https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html?noredirect=on&utm_term=.675070244a67
https://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html?noredirect=on&utm_term=.675070244a67

 5

uncertainty, as well as by decreasing
overhead for post-market support

Following the regulations makes the code
easy to review and debug, allowing for secure
software to be developed more quickly and
with greater assurance, increasing premarket
development speed and decreasing the
amount of patching necessary to fix issues or
concerns post-market.

Even though IEC 62304, the ISO guidance on
software development for medical devices,
does not explicitly include static analysis as
part of its direction, the FDA premarket
guidance now specifically calls out secure
static analysis testing. Other regulatory
bodies such as those in the EU, Canada, and
Australia are also catching up on requiring
static analysis. Noncompliance exposes not
only your business but also your potential
patients to significant risk or harm.

Functional Standards define the minimum
operational requirements of a system and its
components. In the medical device industry,
these are typically related to functional
safety. Examples of these are shown below:

• IEC 61508 – “Functional safety of
electrical/electronic/programmable
electronic safety-related systems”

• IEC 62061 – “Safety of machinery:
Functional safety of electrical, electronic
and programmable electronic control
systems”

• ISO/IEC TS 17961 – “Information
Technology – programming languages,
their environments, and system software
interfaces”; security coding rules.

Coding Standards are a collection of coding
rules, guidelines, and best practices to
improve the safety, quality, and security of
the implementation. These may also include
guidelines on coding style. Examples of these
are shown below:

• MISRA (Motor Industry Software
Reliability Association) – one of the most
popular coding standards. The original
version (1998) emphasized safety,
quality, and reliability, but it was revised
in 2012 to include Static Analysis for
Secure Testing (SAST) based on CERT C.

• CERT C by SEI (Software Engineering
Institute) – created in 2008 specifically
for security, using ISO 17961 as its
baseline, and geared specifically for SAST.
Its latest revision was published in 2016

CERT C and MISRA 2012 have some areas of
overlap, but because of their different
emphases, our best practice recommendation
is to integrate CERT C with MISRA 2012 and
apply them both.

In general, static analysis should be
performed each time code is compiled and
committed or pushed, prior to any formal
code review, and before unit testing. It should
become a habit to perform static analysis on a
regular cadence throughout each project. The
pattern then reinforces coding best practices,
so that it becomes easier to remember the
critical rules and apply them while
developing. The result is not only a cleaner
code base and a more reliable product but a
faster, more efficient development cycle.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices

 6

Dynamic Analysis
Prior to the 1970s, little distinction was made
between debugging and testing like there is
today. If your code compiled, it was
considered complete! However, in the 1980s,
the aerospace industry introduced
destructive or stress testing, which
deliberately strains the component or system
to expose faults and understand performance.
Contrast this with nondestructive testing,
which evaluates standard component or
system behaviors in order to collect and
understand performance metrics under
normal conditions.

As developers began to distinguish between
debugging and testing, it became a best
practice for developers to debug software and
then have a separate test group evaluate it.
Later in the 1990s, developers decided it
would be beneficial to integrate testing into
the development cycle so that bugs could be
prevented before the code reached the
verification stage. This was the beginning of
dynamic analysis as we know it.

Dynamic analysis includes assessments of
Modules, such as an individual C-file (and can
also incorporate its matching header file), and
Units, or individual functions within a
module. For testing purposes, both the API
and the static units are counted separately.

• Unit Testing is white-box testing conducted
on the smallest testable components of the
software. In procedural languages like C, this
is an individual function in isolation. In
object-oriented programming, this may be an
entire class or interface.

• Integration Testing (also called module
testing or interface testing) is grey-box testing
on related or grouped modules. These tests
typically go through the API, purposely
constraining themselves to the interface’s

functionality as it relates to the module or
module grouping, and attempt to stress the
interface. This includes low-level
“fuzzing,”pushing garbage or noise as an
input to see how the program responds.

• System Testing is black-box testing of the
entire software, using only externally-
available stimulus such as the
Communication Interface Protocol (CIP). It
involves both destructive/stress and
nondestructive/evaluative testing and seeks
to answers questions like, “What happens if
we overload communications channels?” as
well as, “How long does it take the program to
return the answer to a complicated set of
inputs?”

 7

Unit Testing
Unit testing consists of isolating individual
units from each module and the overall
software system and subjecting each group to
a series of tests. External calls made by the
unit are stubbed with mock functionality. Any
shared parameters should also be mocked out
because you want to test the individual unit
as independently from the rest of the module
as possible. Once isolated and mocked, each
group within the module is challenged for
various conditions with a pass/fail criteria.

Test Case: each test case exercises a specific
functional or behavioral path within a unit
(function) for a given module. Test cases
should be completely independent of each
other. If you have to combine test cases or
suites in any manner, they are not being
executed properly.

Test Suite: a collection of orthogonal tests
cases for a given module

Mocks and Stubs: Mocks or stubs are specially
generated functions that replace the actual
function calls from the unit under test

because they reside outside the module in
scope. This gives the test developer flexibility
to add/modify the stub functionality to inject
the necessary stressed for a given test
scenario or behavior. This also allows for
removing hardware dependencies or
requirements for testing.

Test Harness: a collection of test suites, stubs,
and mocks along with test validation
functionality

Test Runtime: a tool-specific run time
executable or library

Unit testing provides statement coverage,
meaning it assures that every line of code was
executed and addresses every edge, branch,
and condition. Next, it ensures that the code
recognizes boundary conditions and correctly
responds to an out-of-bounds input.

For example, if you typed in zero or six into a
one-to-five input, the boundary conditions
will detect the problem and enforce backup
procedures. It detects security problems
stemming from low-quality code, such as
using unsafe string functionality. When static
analysis identifies a possible security flaw,
unit testing can confirm the validity of the
static analysis. Unit testing assists with fault
localization, isolating specific buggy code. It
includes flow analysis, which checks
permutations to see if there is unnecessary or
repetitive code that can be merged or deleted
to save space.

Finally, unit testing encompasses memory
leak detection and concurrency defects. These
last two are not always required for programs
developed in embedded medical applications
but do apply for programs designed to run on
an operating system (PC or mobile platform).

Module (c-file)

Unit (function) Unit (function) Unit (function)

External call (API)
Stub

External call (API)
Stub

global, shared structures definitions (mocked)

Test Suite

test case

test case

Test Suite

test case

test case

Test Suite

test case

test case

Test Harness

Test Runtime

 8

Here’s a simplified example of the kind of
problem unit testing can uncover:

As written, no input value which passes the
first two checks will ever fail the third.
Writing a test to confirm that this check
works correctly isn’t possible, so testing has
successfully identified a problem with the
code (results which we would expect to fail
the third check always pass).

Although it would be ideal to perform unit
tests as often as possible, practical limitations
prevent this from becoming a reality. That
said, unit testing should always be

performed:

(1) After completing each initial unit
implementation (including
coding/debugging)

(2) After static analysis, but before formal
code review

(3) Every time the unit or its parent module
is updated or refactored

Test-Driven Development (TDD) philosophy
encourages unit testing and implementation
to be done in parallel. Ideally, the tests would
be generated toward the design prior to
implementation – i.e., you should identify and
devise testing during design review – but this
is difficult in practice since it tends to push
implementation milestones farther away
from project start in the timeline. Look for a
compromise between TDD best practice and
project timeline.

Unit testing is required to comply with IEC
62304 as part of required unit verification for
Class B and C medical devices. Note that ‘unit
verification’ here does not necessarily mean
that 100% unit testing coverage is required;
risk analysis will determine how much unit
testing is necessary, and which areas of the
program can be assured through integration
testing instead. Meanwhile, the FDA’s
updated premarket submission guidance
does require unit testing with boundary
conditions to be performed as part of SAST.

min < value <
max

max <=
MAX_VALUE

Return (err)

func(value)
set err to success

min <= max

yes

yes

yes

Set err to failed min, value, max are input
parameters of type uint8_t
MIN_VALUE and MAX_VALUE are
defined macros where MIN_VALUE
< MAX_VALUE always

no

If value is greater than min and less
than max, it guarantees that min
will always be less than max
Test case to cause this condition to
fail is not possible in the current
flow.
Possibly, the intent here was to
check min >= MIN_MAX?

